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Abstract

The Prisoner’s Dilemma is a non-zero-sum discrete two-player game. It is often used to study
social phenomena like cooperation. In this paper we describe and analyze a continuous version of
the Prisoner’s Dilemma, which we call the Trader’s Dilemma. The continuous version can provide
further insights in the phenomenon of cooperation because it allows new types of strategies.

In the 1998 revision, I have introduced the name Trader’s Dilemma. Furthermore, it includes
some minor modifications and additions.
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1 Introduction

The Prisoner’s Dilemma (PD) is a two-player game, explained below. It has been studied extensively,
both in an empirical context and a theoretical context. In [1], Axelrod gives a very readable account of
the PD and its relevance to everyday life. He draws from insights obtained through two tournaments
for computer programs that play the iterated PD. Hofstadter summarizes these results and philosophizes
about them in [5]. In [10], the authors report on numerous laboratory experiments conducted with human
subjects in PD-like game settings. Davis treats the Prisoner’s Dilemma among other mathematical games
in [3]. Some more recent result concerning the PD are presented in [8, 9].

In Sections 2 and 3 we describe the Prisoner’s Dilemma and its iterated version. We introduce a
continuous version of the PD, which we call the Trader’s Dilemma (TD), in Section 4, and analyze it
briefly in Section 5. Section 6 concludes this paper. Some technical details have been collected in the
appendices.

Some proofs have been presented in an annotated calculational style. Each step of such a calculation
takes the following format:

E

R { H }
F

whereE andF are expressions,R is a relation, andH is a hint indicating whyE R F holds.

2 The Prisoner’s Dilemma

The Prisoner’s Dilemma (PD) is a game for two players, say,A and B. In anencounteror moveof the
PD, each player chooses either tocooperate(C) or to defect(D). Let us call the respective choicesa
andb. The profitspA(a,b) andpB(a,b) of A andB respectively are determined by the followingpayoff
matrix:

pA, pB b= C b = D

a = C R, R S, T

a = D T, S P, P

(1)

where
S is thesucker’s payoff(for a forsaken cooperator),
P is thepunishment(for mutual defection),
R is thereward(for mutual cooperation),
T is thetemptation(for defecting on a cooperator),

satisfying thePD-condition
S < P < R < T. (2)

The objective of the players is to maximize their own total profit in an absolute sense; not just to have a
higher profit than the other player. Note the symmetrypB(a,b) = pA(b,a).

Typical values for the payoffs are

S, P, R, T = 0,1,3,5. (3)
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If in this case, for instance,A cooperates andB defects, thenA gains zero points andB gains five points.
The dilemma arises because of the following two conflicting consequences of PD-condition (2).

1. No matter whatB does, it is better forA to defect, since

pA(C,C) = R < T = pA(D,C)
pA(C, D) = S < P = pA(D, D)

2. However, ifB—who can be expected to reason likeA—is going to do the same asA, then it is
better forA to cooperate, since

pA(D, D) = P < R = pA(C,C)

The namePrisoner’s Dilemmaderives from the interpretation where the players are crime suspects
awaiting their trial in separate prison cells. They cannot negotiate. The option to cooperate (with the other
prisoner, not the justice department) corresponds to keeping one’s mouth shut, not implicating the other.
The option to defect corresponds to squealing. If both prisoners keep silent, they both get a mild sentence
for lack of evidence. If both confess, they both get a more severe punishment. But if one talks while the
other keeps quiet, then the tempted talker is acquitted and the silent sucker is sentenced maximally. This
“payoff” scheme satisfies PD-condition (2), resulting precisely in the Prisoner’s Dilemma.

Another interpretation is that where the players are trade partners. One of them will bring a box
of rice, the other a box of beans. A move (transaction) consists of exchanging boxes. Cooperation
corresponds to bringing a box filled with the promised merchandise. Defection corresponds to bringing
an empty box. Again the “payoffs” satisfy the PD-condition.

Note that the Prisoner’s Dilemma is anon-zero-sum game, because the profit that one player makes
on a move does not necessarily equal the loss of the other player on that move. In azero-sum gameone
would havepA(a,b) + pB(a,b) = 0 for all a andb. If the aim of the game would have been to earn
more than the other player (i.e., to maximize theprofit difference), then the game would not change if
both components of any pair in the payoff matrix would be increased or decreased by the same amount.
In that case, one can shift all payoffs to obtain a zero-sum payoff matrix. This results in an entirely
different and less interesting game, since always defecting ensures that one does no worse than one’s
opponent.

3 The Iterated Prisoner’s Dilemma

The iteratedPrisoner’s Dilemma consists of asequenceof PD-moves. We also call it aPD-game. The
choices ofA and B on movek (k ≥ 0) are denoted byak andbk respectively. In the analysis of the
iterated Prisoner’s Dilemma some new complications arise.

First, a player can adopt quite a complexstrategyto choose between cooperation and defection on
each move. The choice may involve the entire game history, that is,ak may depend on all(ai ,bi ) with
0≤ i < k. It may also involve stochastic variables. Here are two examples of simple strategies.

RNDq (Random): On each move cooperate with probabilityq, defect otherwise.

TFT (Tit-for-Tat): On the first move cooperate, on each subsequent move do as your oppo-
nent did on the preceding move, that is,a0 = C andak+1 = bk for k ≥ 0.
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Second, consider thejoint profit pA + pB on a move:

pA + pB b = C b = D

a = C R+ R S+ T

a = D T + S P + P

(4)

In order for the original dilemma to persist in the iterated PD, it is necessary (and sufficient) that the
maximal joint profit is obtained fora,b = C,C (yielding 2R). Otherwise it would be possible for
the players to earn the same or even more by cooperating and defecting on alternate moves, one player
starting with cooperation, the other with defection. This gives rise to the additional condition

S+ T < 2R. (5)

A third complication in the iterated PD concerns thenumber of moves. In computer tournaments it is
a practical necessity to limit the number of moves. Also in real life the number of encounters is limited.
But usually it is not known in advance when the game ends. Axelrod takes the following approach in [1].
The probability to meet again after any move is assumed to bew with 0 < w < 1, independent of the
game’s history. Because Axelrod’s presentation is not sufficiently formal, we explain his approach in
more detail in Appendix B.

The probabilityw can also be interpreted as aweightor discount parameter, which expresses how
important potential future profits are for the cumulative profit over the whole game. A small value ofw

means that the future carries little weight, whereas a large value means that the future is likely to con-
tribute considerably. Givenw, Axelrod computes theexpected cumulative profit V(A|B) of strategyA
playing a PD-game against strategyB by

V(A|B) =
∞∑

k=0

Vkw
k, (6)

whereVk is A’s expected profit on movek (k ≥ 0), given that this move occurs. For example, the
expected cumulative profit of Tit-for-Tat playing against itself is

V(TFT|TFT) =
∞∑

k=0

Rwk = R/(1−w),

because Tit-for-Tat always cooperates with itself.
In Appendix C we show that when the future is discounted (i.e.w < 1), condition (5) is still

sufficient—but no longer necessary—to exclude optimal profit by out-of-phase alternation of cooperate-
defect choices.

4 The Trader’s Dilemma: A Continuous Prisoner’s Dilemma

The Prisoner’s Dilemma as described above isdiscrete, in the sense that each player chooses amongtwo
options: cooperate or defect. We now consider acontinuousvariant, called the Trader’s Dilemma, where
each player chooses a real number in the closed interval [0,1]. One can think of 0 astotal defectionand
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of 1 astotal cooperation. The payoff functions can, for instance, be obtained from the discrete payoff
matrix by linear interpolation:

pA(a,b) = abR+ ab̄S+ ābT+ āb̄P,

pB(a,b) = baR+ bāS+ b̄aT+ b̄āP,
(7)

where
x̄ = 1− x (8)

Note again the symmetrypB(a,b) = pA(b,a) in (7). Also note that the discrete PD is embedded in this
continuous version, since takingC = 1 andD = C = 0 yields

pA(C,C) = R, pA(C, D) = S,
pA(D,C) = T, pA(D, D) = P.

In Appendix A we discuss efficient evaluation of the payoff functions. Finally, we note that there is a
relationship between the payoff in Trader’s Dilemma as described by (7) and the expected payoff for
probabilistic strategies in the discrete PD that imitate a choicea ∈ [0,1] by choosing 0 with probability
1− a and 1 with probabilitya.

Continuous versions of the Prisoner’s Dilemma appear to be less well known than the discrete PD.
For instance, they are not mentioned in the survey article [2], which does cover other extensions such as
noise, i.e., a non-zero probability of misimplementation or misperception of choices. In [10], the authors
consider discrete games with more than two choices per move, but they do not include continuous games.
Fader and Hauser present a multiplayer continuous version based on another model in [4].

One can argue that the continuous version models reality more faithfully, since real-life PD-like
encounters hardly ever restrict the players to the two extreme behaviors of total cooperation or total
defection. Consider, for example, the interpretation in terms of trade partners. Instead of bringing a
full or an empty box, a player might also consider bringing a partially filled box (maybe reasoning that
“the other will not notice a few beans less”). Naturally, in such intermediate cases, the payoffs will vary
accordingly. This is nicely captured in our continuous version of the Prisoner’s Dilemma, and that is also
why we chose the name Trader’s Dilemma.

We expect that this Trader’s’s Dilemma will provide further insight in the phenomenon of coopera-
tion. Axelrod explains in [1] that a “good” strategy should be

1. nice(defect only to punish the other’s defection),

2. provokable(indeed punish the other’s defection by somehow retaliating),

3. forgiving (restrain punishment once the other cooperates again), and

4. clear (easy to “understand” for other players).

In the discrete PD there are only limited possibilities for retaliation. Tit-for-Tat always punishes the
other’s defection by defecting itself on the very next move and immediately forgetting about it afterwards.
Other retaliation schemes are incorporated in the following two discrete strategies.
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TFTm,n (m-Tits-for-n-Tats): Cooperate, unless the other defectsn times (in a row), then
defectm times (I admit, this is a vague description).

GTFTq (Generous Tit-for-Tat): Cooperate, unless the other defects, then once cooperate
with probabilityq (defect with probabilityq̄).

Observe thatTFT = TFT1,1 = GTFT0. In the discrete PD, players can only vary the duration and
the probability of punishment when retaliating. In a continuous PD they can also vary the size of each
punishment. Here are two examples of (parameterized) continuous strategies.

ALLx (Always-x, x ∈ [0,1]): For allk, k ≥ 0, takeak = x.

DTFTr (r -Damped Tit-for-Tat,r ∈ [0,1]): Start with total cooperation and continue with
anr -weighted average of 1 and the opponent’s preceding choice, that is,a0 = 1 andak+1 =
r · 1+ r̄bk = r̄ bk for k ≥ 0.

Retaliation byDTFT is not abrupt but “damped” with factorr . For r = 0 (no damping), however, we
haveak+1 = bk, which can be viewed as the continuous counterpart of Tit-for-Tat. And forr = 1 (total
damping) we haveak = 1, which is the same asALLC. Note that, in general,ak+1 ≥ bk, and that
ak+1 > bk if and only if bothr > 0 andbk < 1. We will return toDTFT in the next section.

The Trader’s Dilemma given by (7) is one out of an infinite class of continuous versions of the PD.
The only reason for considering this particular member is that it has such a simple definition. For an
alternative we refer the reader to [4].

5 Brief Analysis of the Trader’s Dilemma

In the preceding section we have defined payoff functions (7) for the Trader’s Dilemma, a continuous
version of the Prisonser’s Dilemma. Figure 1 shows the graphs for the individual payoffs (A: solid
boundary;B: dashed boundary) and the joint payoffpA(a,b)+ pB(a,b) in our typical case (3).
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Figure 1: Individual payoff graphs (left) and joint payoff graph (right)

Because the payoff functions were obtained by linear interpolation, the intersection of each graph and
a plane perpendicular to either thea-axis or theb-axis consists of a straight line; that is, each graph is a
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“ruled surface”. More precisely, the graphs are hyperbolic paraboloids (a type of quadric saddle surface),
degenerating to a plane whenR+ P = S+ T . In Figure 1, the curvature is not so apparent, but can
be inferred by comparing the slopes of opposite boundaries. As a consequence of the ruled nature of the
graphs, their global maxima and minima lie on the boundary. In particular, on account of conditions (2)
and (5), the joint payoff function attains a global maximum of 2R at (a,b) = (1,1).

For which(a,b) do we havepA(a,b) = pB(a,b)? We calculate

pA − pB = ab̄(S− T)+ bā(T − S)

= (b− a)(T − S).

On account ofS< T we thus have

pA < pB ≡ a > b,

pA = pB ≡ a = b,

pA > pB ≡ a < b.

Takinga = b we get as payoff

pA(a,a) = a2R+ aā(S+ T)+ ā2P

= (R+ P − 2Q)a2 + 2(Q− P)a+ P,

whereQ = (S+ T)/2. From the above observation that the joint payoff function has a global maximum
at (a,b) = (1,1) we can conclude thatpA(a,a) wherea ∈ [0,1] has a global maximum ata = 1
(regardless of the signs ofR+P−2Q and 2(Q−P)). However, in caseQ < P we find a globalminimum
of pA(a,a)—and saddle point ofpA—not ata = 0 but ata = (P − Q)/(R+ P − 2Q): even when
choosing the same as one’s opponent, one can do worse thanP. For example, ifS, P, R, T = 0,23

4,3,5
then pA(

1
3,

1
3) = 22

3 < P = pA(0,0).

Damped Tit-for-Tat revisited

Let us investigate the continuous strategyDTFT defined in the preceding section. Observe thatDTFT is
nice (a0 = 1, andbk = 1 ⇒ ak+1 = 1) and, hence,

V(DTFT|DTFT) = R/w̄.

Furthermore, whenALLx (Always-x) plays againstDTFTr , the first move is(x,1) and all subsequent
moves are(x, r̄ x̄). Therefore, we find

V(ALLx|DTFTr ) = x R+ x̄T +
∞∑

k=1

(xr̄ x̄ R+ xr̄ x̄ S+ x̄r̄ x̄T + x̄r̄ x̄ P)wk

= x R+ x̄T + (xr̄ x̄ R+ xr̄ x̄ S+ x̄r̄ x̄T + x̄r̄ x̄ P)w/w̄

Consider a large population of players employing strategyA and a single player using strategyB.
In this situation, eachA-player earnsV(A|A) per game and theB-player V(B|A). Axelrod says that
strategyB caninvadestrategyA when

V(B|A) > V(A|A). (9)
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Consequently,ALLx can invadeDTFT if and only if the above profit exceedsR/w̄. In the special case
x = C = 1, invasion is unconditionally impossible. Forx < 1 we derive

R/w̄ < x R+ x̄T + (xr̄ x̄ R+ xr̄ x̄S+ x̄r̄ x̄T + x̄r̄ x̄ P)w/w̄

≡ { w̄ > 0, becausew < 1 assumed}
R < (x R+ x̄T)w̄ + (xr̄ x̄ R+ xr̄ x̄ S+ x̄r̄ x̄T + x̄r̄ x̄ P)w

≡ { w̄ = 1−w, collecting terms withw on the left and others on the right}
(x R+ x̄T − xr̄ x̄ R− xr̄ x̄ S− x̄r̄ x̄T − x̄r̄ x̄ P)w < x R+ x̄T − R

≡ { combining terms withR andT }
(xr̄ x̄ R− xr̄ x̄ S+ x̄r̄ x̄T − x̄r̄ x̄ P)w < −x̄ R+ x̄T

≡ { x̄ > 0, becausex < 1 assumed; algebra}
[x(R− S)+ x̄(T − P)]r̄w < T − R

≡ { R− S> 0 andT − P > 0, on account of PD-condition (2)}
r̄w <

T − R

x(R− S)+ x̄(T − P)
(10)

Observe that

sup

{
T − R

x(R− S)+ x̄(T − P)

∣∣∣∣ x ∈ [0,1)

}
= max

{
T − R

R− S
,

T − R

T − P

}
.

Consequently, noALLx can invadeDTFTr providedr̄w is sufficiently large:

r̄w ≥ max

{
T − R

R− S
,

T − R

T − P

}
. (11)

For example, in case of the typical payoffs (3), invasion cannot occur whenr̄w ≥ 2
3. Thus, whenw > 8

9,
invasion cannot occur whenr ≤ 1

4. Note that in the typical case,ALLx is better at invading forlarger
values ofx (i.e when more cooperating), sinceR− S= 3< 4= T − P.

Axelrod calls a strategycollectively stableif no strategy can invade it. We now prove thatDTFTr

is collectively stable if and only if (11) holds. Condition (11) is obviously necessary, viz. to prevent
invasion byALLx. To prove that it is sufficient, assume (11) and consider any strategyB. We will show
that the bestB can do againstDTFTr is always to cooperate. Consider any game ofB versusDTFTr .
Let B’s first and second choice bex andy respectively. The first two moves of the game then are(x,1)
followed by(y, r̄ x̄). B’s profit Vk on movek satisfies

V0 = x R+ x̄T,

V1 = yr̄ x̄ R+ yr̄ x̄ S+ ȳr̄ x̄T + ȳr̄ x̄ P

Note thatVk does not depend onx for k ≥ 2. We investigateB’s cumulative profitp(x) when varying
B’s first choicex. We have

p(x) = x R+ x̄T + (yr̄ x̄ R+ yr̄ x̄ S+ ȳr̄ x̄T + ȳr̄ x̄ P)w +
∞∑

k=2

Vkw
k. (12)
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We now calculate
d

dx
p(x) = R− T + (yr̄ R− yr̄ S+ ȳr̄ T − ȳr̄ P)w

= [y(R− S)+ ȳ(T − P)]r̄w − (T − R).

Observe that the derivative does not depend onx. On account of (11) andy ∈ [0,1], the derivative is at
least zero and, hence,p(x) is maximal atx = C = 1. However, ifB cooperates on the first move, then
so doesDTFT on the next move and the situation is the same as before. Consequently,B gets a maximal
profit by always cooperating. We have already seen that the strategyALLC (Always-Cooperate) cannot
invadeDTFT becauseDTFT always cooperates with itself. Therefore, no strategy can invadeDTFT.

This concludes our stability proof. Note that this is a nice proof without case analysis, and that it
holds for the discrete PD as a special case. (The proof for the discrete PD in [1] is by case analysis.)

Although Tit-for-Tat is a “good” strategy, it has some shortcomings. For example, consider the
following strategy.

STFT(Suspicious Tit-for-Tat): Initially defect, then act asTFT; that is,a0 = 0 andak+1 =
bk for k ≥ 0.

WhenTFT plays againstSTFT, they get stuck in out-of-phase alternating cooperate-defect choices. On
account of (5) this is worse than mutual cooperation. Such alternation may also appear on account of
errors due to noise. A little forgiveness is needed to avoid such locking behavior. The advantage of
Damped Tit-for-Tat over Tit-for-Tat is thatDTFT has the ability to re-converge to total cooperation after
errors, because it can forgive defection to a certain extent. For example, consider a game ofDTFTr

versusDTFTs, where the initial move (erroneously) was(x, y). The next two moves then are

(r̄ ȳ, s̄x̄) and (r̄ s̄x̄, s̄r̄ ȳ),

becausēz= z. Thus we have in this game

a2k = tkx̄,

a2k+1 = r̄ tk ȳ, where

tk = (r̄ s̄)k,

and similarly forbk. If r > 0 ors> 0 thenr̄ s̄< 1 and, hence,

lim
k→∞ tk = 0 and lim

k→∞ ak = 1

(the more damping, the faster the convergence). If bothr = 0 ands = 0 (neither damps its response),
then the game is locked in an alternation of(x, y) and(y, x) moves. A bit of damping, neither too much
(cf. (11)) nor too little (r > 0), is advisable.

Axelrod’s notion of a collectively stable strategy, involves an environment where almost all players
use the same strategy, sayA. This sets the “normal” profit ofA in that environment atV(A|A). Invasion
into this environment by strategyB then requiresV(B|A) > V(A|A). However, in a mixed environment
containingA, the “normal” profit of A might well differ from V(A|A), say Ṽ(A). For instance,TFT
does less well whenSTFT is present. Replacement ofA by B then requires that the “normal” profit
of B exceeds that ofA: Ṽ(B) > Ṽ(A). This may be easier forB in the mixed environment than in the
homogeneousA-environment wheñV(A) < V(A|A). In environments whereDTFT’s “normal” profit
may be lower thanR/w̄, it is important to employ a smaller damping factor (be less forgiving) than
prescribed by (11).
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An adaptive variant of Damped Tit-for-Tat

Here is a variant ofDTFT where the damping factor depends on the preceding choice:

ADTFTr (AdaptiveDTFTr ): Takea0 = 1 andak+1 = rakbk for k ≥ 0.

In terms of Damped TFT, the damping factor of the adaptive version israk. If the opponent persists
in total defection (bk = 0), then the response ofADTFT will geometrically drop to total defection
(ak+1 = rak, henceak = r k for k ≥ 0). On the other hand if the opponent cooperates totally (bk = 1),
then so doesADTFT on the next move (ak+1 = 1). Thus,ADTFTexhibitsadaptive damping.

WhenALLD (Always-Defect) plays againstADTFTwe find

V(ALLD|ADTFTr ) =
∞∑

k=0

(
r kT + r k P

)
wk

= (T − P)/rw + P/w̄.

Thus,ALLD can invadeADTFTr if and only if

R/w̄ < (T − P)/rw + P/w̄

≡ { w̄ > 0 andrw > 0 becausew < 1 andrw < 1; definition of¯ }
(1− rw)R< (1−w)(T − P)+ (1− rw)P

≡ { algebra}
w(T − P − r R+ r P) < T − R

≡ { T > r R+ r̄ P becauseP < R }
w <

T − R

T − (r R+ r̄ P)
(13)

Note that the right-hand side is less than one unlessr = 1, becauseP < R. Consequently,ALLD cannot
invadeADTFTprovidedr < 1 andw is sufficiently large. For example, in case of the typical payoffs (3)
andr = 1

4 invasion cannot occur whenw ≥ 4
7.

Like DTFT, alsoADTFT recovers from errors when playing against itself, except when incidentally
the move(0,0) occurs, which is a fixed point.

New types of strategies

The Trader’s Dilemma allows strategies that are impossible (or impractical) in the discrete PD. The
following strategy, invented by Renze de Waal, illustrates this.

SIGs (Signature-s): Initially play s. If the first choice of the opponent is alsos, then coop-
erate on the second move and continue as Tit-for-Tat. On the other hand, if the opponent’s
first choice differs froms, then proceed by always defecting.

The parameters in this strategy can be viewed as asignature, by which SIGs intends to “recognize”
others of its kindin a single move. SIGs does well against itself, especially whens is close to one. By
taking a “secret”s (in particular, not equal to one),SIGs will limit the profit of other (in particular, nice)
strategies. This makes it hard to invade a large population ofSIGs players.
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6 Concluding Remarks and References

We have briefly presented the Prisoner’s Dilemma (PD) and its iterated version. We then defined a con-
tinuous version of the Prisoner’s Dilemma, called the Trader’s Dilemma. In the Trader’s Dilemma, the
players choose along a continuum between the usual two options of cooperation and defection. The pay-
offs vary accordingly. The Trader’s Dilemma better models some real-life PD-like encounters, such as
trade transactions. One interesting feature of the Trader’s Dilemma is that it allows measured retaliation
against defectors.

We have carried out a first analysis of the Trader’s Dilemma. A “damped” version of the famous Tit-
for-Tat strategy, calledDTFT, turns out to be feasible. We have characterized its resistance to invasion
by arbitrary strategies. For appropriate values of the damping factor,DTFT cannot be invaded if the
future carries enough weight. Damped Tit-for-Tat was also shown to recover from errors due to noise,
because it is more forgiving than Tit-for-Tat; that is, unlike Tit-for-Tat it avoids locking into echoing
recriminations.

The preceding result can be paraphrased as follows in terms of real-world situations. Punishment
should at least be so severe, that the other player’s payoff will be less than that under mutual cooperation,
no matter what the other chooses to do. When punishment is less severe, it does not act as a deterrent.
However, punishment need not be maximal, but it should just be sufficiently strong to make defection
a less profitable alternative than cooperation for the other. In fact, punishment should be as lenient as
possible to maximize the possiblities for reconverging to mutual cooperation. In practice, this is often
forgotten and there is even a tendency to punish more severely than the original provocation.

We have also exhibited a new type of strategies using the notion of a signature, which encodes a
strategy’s identity in a single choice. Such strategies are impossible in the discrete PD.

Further investigation of the Trader’s Dilemma is still needed to shed more light on the new possibili-
ties it affords. For instance, noise effects can be implemented more realistically in the Trader’s Dilemma,
because the effect of noise need not be restricted to a discrete effect (viz. a 0–1 flip). A computer tour-
nament might be a good way to start. Preliminary experiments have shown thatDTFT and especially its
adaptive variantADTFT do well in tournaments.

Added in January 1998

Below is an excerpt from my letter (dated June 7, 1995) to the editors of the Scientific American in
response to the article by Nowak, May, and Sigmund [7].

“The Arithmetics of Mutual Help” by Martin Nowak, Robert May and Karl Sigmund
[SCIENTIFIC AMERICAN, June 1995, pp. 50–55] brings up (again) the so-called Pavlov
strategy for the Iterated Prisoner’s Dilemma; also see “Never Give a Sucker an Even Break”
by Tim Beardsley [SCIENTIFIC AMERICAN, October 1993, p. 12]. The Pavlov strategy
outperforms Tit-for-Tat under particular conditions.

I would like to point out that the Pavlov strategy is not as simple as it seems.In particular,
in real life it is easier and possibly better to assume a Tit-for-Tat strategy rather than a Pavlov
strategy. Let me briefly explain why this is so.

[Explanation of iterated Trader’s Dilemma (ITD) omitted.]
A continuous variant of Tit-for-Tat is easy to define: choose whatever your opponent

chose on the previous move (initially 1). A continuous variant of Pavlov is not so easy
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to define. Imagine that playerA brought a half-filled box in the previous encounter, and
that A’s payoff was 2.25 because playerB also brought a half-filled box. Since the payoff is
below the “reasonable optimimum” of 3, the Pavlov strategy calls for a change ofA’s choice
in the next move. Should playerA bring more next time (to induceB to bring more as well)
or shouldA bring less (to punishB for not having brought more in the first place)?

The difficulty in defining a continuous Pavlov strategy is that in the ITD a change of
choice does not uniquely define a new choice (as opposed to the IPD). You also have to
decide on the direction and the amount of the change. For the extremes there is only one
direction, but in general you can go either up or down, and it is not clear which direction is
best. The ITD has other interesting features as well and deserves further study.
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A Efficient Evaluation of the Payoff Function

In a move of the continuous Prisoner’s Dilemma, each of the two players chooses a real number in the
closed interval [0,1]. Let us call the choicesa andb. The payoff for thea-player (i.e. the one choosinga)
is p(a,b), defined by

p(a,b) = abR+ ab̄S+ ābT+ āb̄P, (14)

wherex̄ = 1− x andR, S, T , andP are some constant parameters satisfying

S < P < R < T. (15)

The payoff for theb-player isp(b,a).
We are interested in “efficient” programsEval that solve

|[ con P, R, S, T : real{ S< P < R< T } ;
a,b: real{ 0≤ a ≤ 1 ∧ 0≤ b ≤ 1 } ;

var pa, pb: real ;
Eval
{ pa= p(a,b) ∧ pb= p(b,a) }

]|
We measure efficiency by the number of multiplications.

Evaluation ofp(a,b) according to its definition (14) requires eight multiplications. Therefore,Eval
can be solved withsixteenmultiplications. Recognizing some common terms, this can easily be reduced
to tenmultiplications as shown in the following solution forEval:

|[ var t,u, v: real ;
t,u, v := a∗b∗R+ (1−a)∗(1−b)∗P, a∗(1−b), (1−a)∗b ;
pa, pb := t + u∗S+ v∗T, t + v∗S+ u∗T

]|
However, we can do better than that. First, we calculate

p(a,b)

= { definition of p }
abR+ ab̄S+ ābT+ āb̄P

= { definition of¯, distribution}
ab(R− S− T + P)+ a(S− P)+ b(T − P)+ P

= { algebra, definingZ = R− S− T + P }[
a(S− P)+ b(T − P)+ P if Z = 0
Z
(
a+ T−P

Z

) (
b+ S−P

Z

)+ P R−ST
Z if Z 6= 0

(16)

Evaluation ofp(a,b) according to (16) requires only two multiplications, since forZ 6= 0 the constants
(T−P)/Z, (S−P)/Z, and(P∗R−S∗T)/Z can be precomputed (for example, by the compiler). Thus,
Evalcan be solved withfour multiplications.
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|[ var s, t,u, z: real ;
z := R−S−T+P ; { z= Z }
if z= 0→

pa, pb := a∗(S−P)+ b∗(T−P)+ P, a∗(T−P)+ b∗(S−P)+ P
[] z 6= 0→

s, t,u := (S−P)/z, (T−P)/z, (P∗R−S∗T)/z ;
pa, pb := z∗(a+ t)∗(b+ s)+ u, z∗(a+ s)∗(b+ t)+ u

fi
]|

But there is an even more efficient solution. Observe that

p(a,b) = [ p(a,b) + p(b,a)]/2 + [ p(a,b) − p(b,a)]/2,

p(b,a) = [ p(a,b) + p(b,a)]/2 − [ p(a,b) − p(b,a)]/2.

We now calculate

[ p(a,b) + p(b,a)]/2

= { definition of p, algebra}
abR+ (ab̄+ āb)(S+ T)/2+ āb̄P

= { definition of¯ }
abR+ [a(1− b)+ (1− a)b](S+ T)/2+ (1− a)(1− b)P

= { algebra, definingQ = (S+ T)/2 }
ab(R− S− T + P)+ (a+ b)(Q− P)+ P

= { algebra, definingZ = R− S− T + P }[
(a+ b)(Q− P)+ P if Z = 0

Z
(
a+ Q−P

Z

) (
b+ Q−P

Z

)+ P R−Q2

Z if Z 6= 0

and

[ p(a,b) − p(b,a)]/2

= { definition of p, algebra}
(āb− ab̄)(T − S)/2

= { definition of¯ }
[(1− a)b− a(1− b)](T − S)/2

= { algebra}
(b− a)T−S

2

Since forZ 6= 0 the constants(S+T)/2, (Q−P)/Z, (P R−Q2)/Z, and(T−S)/2 can be precomputed,
this yields a solution forEvalwith at mostthreemultiplications:
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|[ var q,u, v, z: real ;
q, z := (S+T)/2, R−S−T+P ;
if z= 0→

u := (a+b)∗(q−P)+ P
[] z 6= 0→

u := z∗(a+ (q−P)/z)∗(b+ (q−P)/z)+ (P∗R− q∗q)/z
fi ;
v := (b−a)∗(T−S)/2 ;
{ u = [ p(a,b) + p(b,a)]/2 ∧ v = [ p(a,b) − p(b,a)]/2 }
pa, pb := u+ v, u− v

]|

In the typical case (3)—extensively used by Axelrod in [1]—where

S, P, R, T = 0,1,3,5 , (17)

the coefficientZ = R−S−T+P reduces to−1 and henceEval needs onlytwomultiplications:

|[ var u, v: real ;
u, v := 3.25− (1.5−a)∗(1.5+b), 2.5∗(b−a) ;
{ u = [ p(a,b) + p(b,a)]/2 ∧ v = [ p(a,b) − p(b,a)]/2 }
pa, pb := u+ v, u− v

]|
When simplifying and reworking our four-multiply solution for this typical case, we obtain another two-
multiply solution (this time without auxiliary variables):

|[ pa, pb := (4−a)∗(b+1) − 3, (4−b)∗(a+1) − 3 ]|
Renze de Waal has suggested the following approach to calculate efficiently the total payoff for a se-
quence of moves. Cumulate the factorsσ, π, ρ, τ for S, P, R, T independently and postpone computa-
tion of σS+ πP + ρR+ τT (only four multiplications) until the end of the sequence. For each move
we have

1σ = ab̄ = ab− a, 1π = āb̄ = ab− a− b+ 1, 1ρ = ab, 1τ = āb= ab− b

This requires only one multiplication per move. It has the further advantage thatS, P, R, T can be varied
afterwards without replaying.

B Expected Profit in the Iterated PD

In the Iterated Prisoner’s Dilemma, a game consists of at least one move, and the probability to meet
again after any move is taken to bew with 0 < w < 1, independent of the game’s history. Thus the
probability to meetmore thaǹ times (̀ ≥ 0) isw`, and the probability to meetexactly` times (̀ ≥ 1)
isw`−1w̄, wherew̄ = 1−w. The number of moves in a game has ageometric distribution. Let E be the
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expectednumber of moves in a game andM themediannumber of moves. Concerning the expectationE
we then find

E =
∞∑
`=1

`w`−1w̄ = 1/w̄, (18)

and, hence,

w = (E − 1)/E.

The median game lengthM is such that the probability to meet at mostM times equals 0.5. Since the
probability to meetat most̀ times (̀ ≥ 0) is 1−w` we find for M:

wM = 0.5,

M = ln 0.5

lnw
,

w = M
√

0.5.

In computer simulations, one can generate random game lengths with the appropriate distribution as⌈
ln U

lnw

⌉
or

⌈−M ln U

ln 2

⌉
, (19)

whereU is distributed uniformly in theopeninterval (0,1) (cf. [6]).

We now derive a formula expressing the expected cumulative profit for a game. First consider strategiesA
and B that involve no stochastic variables. All their games consist of the same moves, say(ak,bk) for
k ≥ 0. Let Vk be A’s profit on movek, that is,

Vk = pA(ak,bk). (20)

For givenw, A’s expected cumulative profit for a game is then computed as

∞∑
`=1

[
w`−1w̄

`−1∑
k=0

Vk

]
= { swap summation order: 1≤ ` ∧ 0≤ k ≤ `− 1 ≡ 0≤ k ∧ k+ 1≤ ` }
∞∑

k=0

[
Vk

∞∑
`=k+1

w`−1w̄

]
= { sum geometric series}
∞∑

k=0

Vkw
k (21)

Since the stopping criterion of a game is independent of the strategies, it can be argued that (21) also
holds for stochastic strategies provided thatVk is replaced byA’s expectedprofit on movek.

For example, when Random (cooperating with probabilityq) plays against Tit-for-Tat we have

V0 = qR+ q̄T

Vk = q(qR+ q̄T)+ q̄(qS+ q̄ P) for k ≥ 1.
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Therefore, Random’s expected cumulative profit is

V(RNDq|TFT) = V0+
∞∑

k=1

Vkw
k

= qR+ q̄T + [q2R+ qq̄(S+ T)+ q̄2P
]
w/w̄.

By definition, strategyB can invade strategyA when

V(B|A) > V(A|A). (22)

For 0≤ w < 1 and 0≤ q < 1, we now calculate the condition under whichRNDq can invade Tit-for-Tat:

V(TFT|TFT) < V(RNDq|TFT)

≡ { above computations}
R/w̄ < qR+ q̄T + [q2R+ qq̄(S+ T)+ q̄2P

]
w/w̄

≡ { w̄ > 0 }
R< (qR+ q̄T)w̄ + [q2R+ qq̄(S+ T)+ q̄2P

]
w

≡ { w̄ = 1−w, algebra}
(qR+ q̄T)w − [q2R+ qq̄(S+ T)+ q̄2P

]
w < (qR+ q̄T)− R

≡ { algebra, 1− q = q̄ }[
qq̄ R+ q̄T − qq̄(S+ T)− q̄2P

]
w < q̄(T − R)

≡ { q̄ > 0 }
[qR+ T − q(S+ T)− q̄ P]w < T − R

≡ { algebra, 1− q = q̄ }
(q(R− S)+ q̄(T − P))w < T − R

≡ { q(R− S)+ q̄(T − P) > 0 on account of 2)}
w <

T − R

q(R− S)+ q̄(T − P)
(23)

Compare this result to (10) ofALLx invadingDTFT. For the typical payoffs (3) andq = 1
2 this boils

down tow < 4
7, which corresponds to a median game length of 1.24 moves.RND1 (Always-Cooperate)

cannot invade Tit-for-Tat regardless ofw.

When simulating PD-games between two strategies with varying values forw, one might want to normal-
ize the profits so as to ease comparison. Two ways of normalizing the profits from a sample of PD-games
come to mind.

1. The first way is to divide the average profit per game by the average game length or, what comes
to the same, divide the total profit over all games by the total number of moves in all games:∑

i Vi /G∑
i L i /G

=
∑

i Vi∑
i L i
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whereG is the number of games. When considering many games this “converges” to the quotient
of the expected cumulative profit and the expected game length:∑

i Vi /Li

G

2. The second way is to compute the average (over all games) of the average profit per move per
game. This “converges” to the expected average profit per move, that is, to the expectation of the
quotient of the cumulative profit and the game length.

We would like to emphasize that, in general, these two ways of normalizing are quite different, because
cumulative profit and game length are not necessarily independent stochastic variables. Let us look at an
example to illustrate this difference. Consider the games of Always-Defect against Tit-for-Tat, for which
we have

a0 = D, b0 = C, and ak = bk = D for k ≥ 1.

For Always-Defect’s profit we have

V0 = T and Vk = P for k ≥ 1. (24)

Therefore, given discount parameterw, 0 ≤ w < 1, we have that the expected cumulative profit for
Always-Defect equals

T +
∞∑

k=1

Pwk = T +wP/w̄.

Thus the quotient of the expected cumulative profit and the expected game length (cf. (18)) equals

w̄T +wP = P + (T − P)w̄. (25)

On the other hand, the expected average profit per move is calculated as

∞∑
`=1

(
w`−1w̄

1

`

`−1∑
k=0

Vk

)
= { (24) concerningVk }
∞∑
`=1

T + (`− 1)P

`
w`−1w̄

= { algebra}
P + (T − P)w̄

∞∑
`=1

w`−1

`

= { series for the natural logarithm}
P + (T − P)w̄

ln w̄

−w (26)

It is the factor ln w̄
−w that distinguishes (26) from (25). When taking the limits forw ↓ 0 andw ↑ 1, the

distinction disappears (forw ↑ 1, the factorw̄ also plays a role). Plugging the typical payoffs (3) and
w = 0.5 into (25), we find 3 for the quotient of the expectations. Plugging these values into (26), yields
approximately 3.8 for the expectation of the quotient, a noticeable difference.
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C Alternating Cooperate-Defect Games

Condition (5) on theP, R, S, T -parameters was introduced to exclude optimal profit by out-of-phase
alternation of cooperate-defect choices. When the future is discounted (i.e.w < 1), this condition still
suffices, but it is no longer a necessary condition.

Let us compute the expected cumulative profits for such alternation, that is, for the game with

a2k = b2k+1 = C and a2k+1 = b2k = D for all k ≥ 0.

A’s andB’s expected cumulative profits are respectively

∞∑
k=0

Sw2k + Tw2k+1 = (S+wT)
/
w2,

∞∑
k=0

Tw2k + Sw2k+1 = (T +wS)
/
w2.

The expected cumulative profit of two cooperating players was computed above asR/w̄. Alternation is
more attractive tobothplayers, if and only if

R/w̄ ≤ (S+ wT)
/
w2 and

R/w̄ ≤ (T +wS)
/
w2.

Using 0≤ w < 1 and (2) we derive

R/w̄ ≤ (S+wT)
/
w2 ∧ R/w̄ ≤ (T +wS)

/
w2

≡ { w2 = (1+w)w̄ > 0, on account of 0≤ w < 1 }
(1+w)R≤ S+wT ∧ (1+w)R≤ T +wS

≡ { algebra}
R− S≤ w(T − R) ∧ w(R− S) ≤ T − R

≡ { T − R> 0 andR− S> 0, on account of (2)}
R− S

T − R
≤ w ≤ T − R

R− S
(27)

On account of (2), the range forw given by (27) is empty if and only if

(R− S)2 > (T − R)2,

which is equivalent to (5). However, if this range is not empty, alternation is still less attractive than
mutual cooperation whenever

w <
R− S

T − R
. (28)

To paraphrase: In sufficiently short alternating games (i.e. with smallw), it is not attractive to be the first
to cooperate, that is, to assume the role of initial sucker, because there is not enough compensation in the
future.
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