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0 Introduction

In Trace Theory, the communication behavior of a mechanism is specified by means of a trace
structure. Parallel composition of such mechanisms is modeled by the weaving operator w
and hiding of actions (making them internal) is modeled by the projection operator [. Parallel
composition followed by internalization of the communication channels between two mecha-
nisms is modeled by the blending operator b. It is a combination of weaving and projection
on the external channels. The refinement order, expressing when one mechanism is at least
as good as another, is modeled by the inclusion relation C.

In his dissertation [3], Smedinga studies the following control problem (see p. 29). Given
trace structures P, Lin, and Ly, find trace structure R such that

Lmin g PbR g Lmax- (0)

Liin and Ly, delineate a desired behavior for a mechanism that is to be implemented
as the composition of a known mechanism P with some yet unknown controller R. When
Linin = Lmax = L, we obtain the reduced control problem of finding R such that

PbR=1L. (1)

In this note, we present a solution to the control problem. We also briefly look into the case
that the trace structures are all required to be non-empty and prefix-closed. We compare our
solution to that of Smedinga. Finally, we argue that Smedinga’s interpretation of an arbitrary
trace structure as a specification for the communication behavior of a mechanism is not in
agreement with the intended interpretation of the weaving and projection operators and that
a better approach might be to use the failures model of CSP [0]. This would also take care
of deadlock issues.
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1 Preliminary Theory

In this section, we briefly summarize the relevant parts of Trace Theory. For more details,
the reader is referred to [2].

A trace structure is a pair (A,S) where A is a set of symbols and S is a set of traces
over A, that is, S C A*. A is called the alphabet and S the trace set of the trace structure.
For the time being we ignore the issue of interpreting a trace structure as specifying the
communication behavior of a mechanism. Selector functions a and t on trace structures are

defined by
T = (al,tT).

Trace structure STOP is defined by
STOP = (D,{c}),

where ¢ is the empty trace (of length zero). Inclusion relation C on trace structures is defined

by
TCU = aT'=alU A tT CtU.
Weaving operator w on trace structures is defined by
TwU = (al'valU,{te (al'val)" |ttal e tT A tlaU € tU}),

where t] A is the projection of trace ¢t on alphabet A, that is, the trace obtained by removing
from t all symbols not in A. For alphabet A, projection operator [A on trace structures is

defined by
TIA = (@I'n A, {t1A |t etl}).

Blending operator b on trace structures is now defined by
TbU = (I'wU)[(al +al).

Weaving and blending are commutative and C-monotonic, and have STOP as unit. Weaving
is associative in general and, if each symbol occurs in at most two of the alphabets of the
trace structures involved, then blending is also associative. Furthermore, we have

TbU =(2,0) = al'=alU A tTntlU = . (2)
Proof We derive
TbU = (D, )

{ definition of b }
al'+al =@ At(TwU)|(al ~al) =

{ set theory, property of ! tTA=T =tT =0 }
al'=al ANt(TwU) =
= { property of w: aT' = alU = t(I'wlU) =tT' ntU }
al=aU ANTNU=¢



Reflection operator

We now define a new unary operator on trace structures, called reflection and denoted by .

It is defined by
ST = (al,(al)" ~tT).

It satisfies a number of interesting and useful properties. For instance, reflection reverses the
inclusion order:

TCU = «UCT. (3)
Reflection is its own inverse:

T = T (4)
Reflecting STOP, the unit of weaving and blending, yields the empty trace structure:

WSTOP = (D,9).

The following property expresses a fundamental relationship between the inclusion order,
reflection, and blending;:

TCU = TbhbwU =(90,9). (5)
Proof We derive
TCU

= { definition of C }
al’=alU AN tT CtU

= { set theory }

al'=alU AtTn((aU)*\tlU) =0
{ definition of v }

al'=a(wU) AtT'Nt(AU) =
(@)

TholU = (2,2)

Finally, we arrive at the most important property, which can be interpreted as a factor-
ization formula:

ThbUCV = TCA(UbwV). (6)
Proof We derive

TbUCV
= { (5), definition of b }
(ThU)bwV = (2,8) A al +al =aV
= { b associative because al’'Nal Na(«V) =T }
Th(UbwV)=(2,2) A al ~al =aV
= { (4), set theory }
Thor(UbwV) = (2,0) A al = all = aV
= { (5), definition of b }
TCA(UbwV)



2 Solutions to the Control Problem

We now consider the control problem (0) again. We claim that it has a solution if and only if
Lmin g Pbm(Pmemax) (7)
Furthermore, if it is solvable then «(P b« Lpay) is the C-greatest solution.
Proof We derive (7) as solvability condition:
(3R Linin C Pb R C Linax)
= { (6), using commutativity of b }
(AR Lyin CPbR AN RC ~A(Pbvlmax))
= { =: b is C-monotonic; <: take R := «(PbvLmax) }
Lmin - Pbm(PmemaX)
The greatest solution—if there exists one—is now also obvious. [

The solvability condition can be effectively computed for regular (i.e., finite state) trace
structures, because all operators involved, including reflection, are effectively computable, for
example, in terms of state graphs.

In Trace Theory, only non-empty prefix-closed trace structures, i.e., T such that

tI'#@ N (Vs,t:stetl :setl),

are used to specify the communication behavior of mechanisms. These trace structures are
called processes.

For processes P and L, in general, «~(Pb 1) need not be a process. Consider, for
example,

L = ({a},{e}),
P = {a,2},{c,a}).

Then we have

wLo= ({a},{a" | n>1}),
PboL = ({2}, {alz}}) = {{z},{e})
“(Pbwl) = ({e}{2"|n2=1}).
The latter is not prefix-closed. In this case, because it does not contain ¢, there is no solution

to the reduced control problem (1) for P and L in terms of processes.
The prefiz-interior of trace structure T', denoted T°, is defined by

T° = (@l {tetl|(Vs:s<t:setl)}),

where s < ¢ expresses that s is a prefix of t. T° is the C-greatest prefix-closed trace structure
contained in 7. It is effectively computable for regular trace structures. We now obviously
have that the control problem (0) is solvable for prefix-closed—but possibly empty— R if and
only if

Lmin g PbT7

where T' = («~(P b Lmax))°. Furthermore, T is the C-greatest prefix-closed solution, if one
exists. If T is empty, i.e., tT = &, then the control problem is not solvable for processes K.



Smedinga’s solution method

Smedinga solves a restricted version of the control problem in [3, Ch. 3], viz. by considering
only trace structures P and L such that al C aP and R such that R C P[|(aP \al). Fur-
thermore, he expresses the solutions in terms of, what one might call, a relativized reflection
operator (see pp. 32 and 35):

Rmax = (PbLmaX) N (P b((P raLmaX) N\ Lmax))7

where for trace structures T and U with aT = all we define the trace structure T'\ U, called
the reflection of T relative to U, by

T~U = (al,tT\tU).
Note that our reflection operator can be expressed in terms of relativized reflection by
T = (al,(al)" )\ T.

Our reflection operator is algebraically much nicer to deal with than Smedinga’s relativized
reflection and it allows a straightforward treatment of the general control problem.

Deadlock

There is still the problem that solutions to the control problem may not be acceptable after
all, because of deadlock. We have not looked into this carefully, but employing the failures
model, as we will suggest in the next section, should also take care of this.

3 Interpretation of Trace Structures as Specifications

In Trace Theory, process T, i.e., a non-empty prefix-closed trace structure, is interpreted as
specification for the communication behavior of a mechanism in one of the following two ways.
Under both interpretations, the alphabet of T determines the set of communication ports of
the mechanism, through which interaction with the environment takes place. Furthermore,
the trace set of T consists of all possible communication histories.

In the first interpretation, this means that if ta € t7T' (and, hence, also ¢ € tT") then the
process may (but need not) engage in a communication along channel a after ¢ has taken
place. Actual occurrence of a after t may depend both on the environment and the “internal”
state of the process after t. On the other hand, if ¢ € tT and ta ¢ tT, then communication
along a is blocked unconditionally after ¢. This is a very weak interpretation (as far as progress
is concerned), but the intended meaning of weaving and projection agrees with it.

In the second interpretation, if ta € tT then the process is required to perform some
successor action b after ¢ such that tb € t7T', but not necessarily b = a (the actual choice of
successor may depend on the environment and the “internal” state of the process). Again,
if t € tT and ta ¢ tT then communication along @ after ¢ is unconditionally blocked. Only
if t € t7 and for no ¢ € aT do we have ta € tT, is the process allowed to terminate.
This is a strong interpretation (as far as progress is concerned). For weaving we now have
to consider the possibility of deadlock, where a process has a progress obligation which it
cannot meet because it is curtailed by its environment. This is not captured directly by the
weaving operator. Similarly, projection does not faithfully preserve this interpretation. In [2],
the notions of lock and transparency were introduced to handle these problems. Also, the



inclusion relation no longer expresses refinement and it is not possible to express all kinds of
non-determinism.

A more general model that treats deadlock and non-determinism is the failures model for
CSP [0]. However, it does not admit a reflection operator, unless the domain of processes is
extended. How this extension should be done is a subject for future research.

Smedinga’s interpretation

Smedinga’s interpretation of an arbitrary trace structure T as specifying the communication
behavior of a mechanism is as follows (cf. [3, p. 24]). The alphabet determines the set of
communication ports (same as above) and the trace set determines the set of completed tasks,
i.e., communication histories after which the process may become quiescent (fail to continue).
Hence, trace set inclusion indeed expresses refinement. The trace structure with an empty
trace set, plays the role of a miracle because it has no failures (does not become quiescent)
and nevertheless engages in no communications. It refines every trace structure. For these
reasons it is excluded in [3].

Smedinga’s interpretation is problematic, at least when dealing with synchronous (rendez-
vous type) interaction. (For a consistent interpretation along these lines in an asynchronous
setting see [1].) For instance, the weaving operator suffers from the following deficiency.
Consider trace structures T' and U defined by

T = ({a,b}.{(ab)" | n > 0}),
U = ({a.b}. {a(ba)" | n > 0}).

Because all traces in T are of even length and all traces in U are of odd length, we then have
TwU = ({a,b},9).

However, we would expect the parallel composition to yield a trace structure that describes
a mechanism alternately engaging in a and b actions (starting with ) and never becoming
quiescent. This deficiency can be overcome by allowing infinite traces in the trace sets. Both
tT and tU could be extended with (ab)“, in which case their weave would also contain this
trace and thus be non-empty as expected.

The projection operator is also problematic as the following example shows. Consider
trace structure T defined by

T = ({a,b,2,y},{az, by}).

Then we have

THa,yb = {a.yh {29},

but from an operational point of view the trace ¢ is “partially” quiescent in the projected
trace structure, because 7' could (internally) choose to do b, thereby blocking communication
along . Consider as environment the trace structure U defined by

U = {ey}{z}).

Then we would have

TwU = ({a,b,z,y},{az}),



which expresses that initial action b is to be blocked and this implies backtracking if action b is
actually internal to T". To capture “partial” quiescence precisely, something along the lines of
refusal sets as in the failures model are required, or one should consider asynchronous instead
of synchronous interaction.

Implications

In my opinion, the control problem should be expressed as: Given P and L find R such that
PbRC L. (8)

The additional requirement imposed by (0), viz. Lmin € Pb R, is a no more than clumsy
way to exclude some solutions that—although correct under the weak interpretation—are
not desirable under a stronger interpretation. “Bare” trace structures, however, are not a
suitable model for these stronger interpretations anyway. Using an extended model—for
example, the failures model or the receptive processes model—will overcome this problem
and will give rise to a formulation similar in form to (8).

4 Conclusion

In this note, we have formulated a control problem using the terminology of Trace Theory. An
elegant solution to this control problem has been presented with the aid of a newly defined
reflection operator. Finally, we have analyzed some interpretations of trace structures as
specifications and we have criticized the formulation of the control problem. This has lead
us to suggest further research on the analogous control problem in the failures model of CSP
and the receptive processes model, which requires a suitable extension of the process domains
involved.

References

[0] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[1] M. B. Josephs. Receptive process theory. Computing Science Notes 90/8, Dept. of Math.
and C.S., Eindhoven Univ. of Technology, Sept. 1990.

[2] A. Kaldewaij. A Formalism for Concurrent Processes. PhD thesis, Dept. of Math. and
C.5., Eindhoven Univ. of Technology, 1986.

[3] R. Smedinga. Control of Discrete Events. PhD thesis, Rijksuniversiteit Groningen, The
Netherlands, 1989.



