
Large Programming Assignment:
Binary Puzzle Assistant (BPA)

Programming Methods (2IP15)

December 2012 – March 2013, BPA (v1.2)

Abstract

The goal of this assignment is to integrate the activities that play a role in
developing a larger object-oriented program with a graphical user interface.
Note: This document will receive updates (see change history at the end).

1 Introduction

This assignment concerns the development of a program that assists the user in
solving and designing Binary Puzzles. See below for the precise requirements that
the program has to fulfil.

A Binary Puzzle consists of a rectangular grid, partially filled with zeroes and ones
(see Fig. 1). The objective is to fill the grid completely with zeroes and ones such
that nowhere more than two equal symbols are horizontally or vertically adjacent,
and the number of zeroes equals the number of ones, in each row and in each
column. The given zeroes and ones cannot be changed when solving the puzzle,
but a puzzle designer needs to change them.

Figure 1: The initial state of a Binary Puzzle

1

Programming Methods (2IP15) Series BPA (v1.2)

More precisely:

1. There is a rectangular grid of square cells, with an even number of rows, and
columns. Typically, but not necessarily, the grid itself is also a square.

2. Each cell is either open (empty), or contains a single symbol. The symbol is
either a zero (0) or a one (1).

3. No three horizontally or vertically adjacent symbols are the same.

4. In each row and in each column, no more than half the cells contain the same
symbol. Hence, in a completely solved puzzle, the number of zeroes equals
the number of ones, in each row and in each column.

5. The puzzle has a unique solution.

In some variants, there are other and/or additional rules, but we will not consider
such variants.

2 Requirements

There are three priority levels for requirements:

Priority 1 The requirement must be fulfilled. This is the default priority.

Priority 2 The requirement should be fulfilled, but after Priority 1.

Priority 3 This requirement is desirable, but only after Priority 2.

Note that all priority levels must be addressed in the final version. These priorities
help you to choose a development order.
Concerning functionality:

1. The program incorporates the rules of binary puzzles as described above.

2. The user can load a binary puzzle from a text file via File > Open.... Each
line describes a row in the grid, using the character ‘.’ for an open cell, ‘0’
for a zero, and ‘1’ for a one. The zero or one can optionally be followed
by an asterisk ‘*’ to mark a value entered as part of a solution, that is, in
an unlocked cell; other zero/one cells are locked, empty cells are always
unlocked. Spaces are ignored.

3. The user can save the current puzzle state in a text file, via File > Save...,
according to the same format, separating cells by one or two space characters
(to compensate for an ‘*’) to format the output in aligned columns. When
loading a saved file, this must result in the same grid state as directly before
the save operation. [Priority 3]

c© 2012–2013, TUE.NL 2/14

Programming Methods (2IP15) Series BPA (v1.2)

4. The user can change the contents of cells (also see below).

5. The program can apply simple strategies to help solve a puzzle:

(a) If three adjacent cells contain two equal symbols, then the third cell, if
empty, must be filled by the other symbol.

(b) If half of the cells in a row or column contain equal symbols, then the
remaining empty cells must be filled by the other symbol. [Priority 2]

(c) If filling an empty cell by symbol s (zero or one) would lead to an
inconsistency through repeated application of the preceding two strate-
gies, then that cell must be filled with the opposite symbol. [Priority 3]

6. The program can apply backtracking to help solve a puzzle. [Priority 2]

Concerning the graphical user interface (GUI):

7. The puzzle state is shown graphically (see Fig. 1).

8. The user can change the contents of unlocked cells by point-and-click on a
cell to cycle the contents, from empty to zero to one to empty again.

9. With the alt-modifier key, clicking a cell cycles in the opposite direction.
[Priority 3]

10. The user can request feedback on rule violations in a warning message that
remains visible via a Check button or menu item.

11. When enabled by the user, rule violations are automatically marked in the
grid, by highlighting the violating symbols in red. [Priority 3]

12. The user gets automatic feedback when the puzzle is solved. [Priority 2]

13. The user can request the application of strategies via an Apply Strategies
button or menu item.

14. The user can choose whether the strategies are applied until the first change,
or until no further changes occur. [Priority 2]

15. Which strategies are applied is selectable by checkboxes (possibly in menu
items). [Priority 3]

16. The user can initiate backtracking to find one solutions, via a Solve button
or menu item. Note that the selected strategies are automatically applied
after each speculation step during backtracking. [Priority 2]

17. The user can initiate backtracking to find all solutions, via a Solve All but-
ton or menu item. Note that the selected strategies are automatically applied
after each speculation step during backtracking. [Priority 3]

c© 2012–2013, TUE.NL 3/14

Programming Methods (2IP15) Series BPA (v1.2)

18. The user can enable edit mode, to change locked cells. [Priority 2]

19. The user can repeatedly undo any change via Edit > Undo. [Priority 2]

20. The user can repeatedly redo any undone change via Edit > Redo. [Prior-
ity 3]

21. The user can undo all changes in one action (Undo All), and can redo all
undone changes (Redo All). [Priority 3]

22. Cells changed in the previous action (directly by user, or indirectly by strate-
gies or backtracking) are marked, e.g., a light blue background. [Priority 3]

Concerning the design of the program:

23. There is a clear separation between

• model classes that describe (the state of) a binary puzzle; these include
at least Grid and Cell;

• view classes that contain additional information to render (a view of)
the puzzle in the GUI;

• control classes that respond to the user interface actions of the user;

• solver-support classes that offer operations on puzzle states to assist in
solving or designing a binary puzzle.

24. Every non-GUI class has a corresponding JUnit test class that tests at least
the key functionality. In Test-Driven Development, these are created after
specifying functionality, but before implementing functionality. [Priority 1]

25. The design accommodates future modifications and extensions, such as adding
new strategies, through the application of appropriate design patterns.

26. The design conforms to the provided checklist, and the implementation code
adheres to the 2IP15 Coding Standard.

Wish list (not required to be implemented, but could be used to help make design
decisions):

1. Provide hints for the user.

2. Maintain some statistics.

3. Determine the difficulty level of a puzzle.

4. Automatically generate (solvable) binary puzzles.

c© 2012–2013, TUE.NL 4/14

Programming Methods (2IP15) Series BPA (v1.2)

3 Submission to peach3

Every week, starting in Week 3, you need to submit the most recent version of your
project to peach3.
Put your name and the date in every file that you create or change.
Submit your entire NetBeans project in a zip archive. Make sure you have included
package-info.java with current status information in every package.

4 Model

Let us first analyze what the model for binary puzzles should provide.

1. It stores the state of a binary puzzle, during the process of solving it. Solv-
ing operations can be done manually by the user, or automatically by some
algorithm (below referred to as “client”).

This involves storing the state of each cell in the grid. It would be useful to
distinguish whether a cell was initially filled with a symbol (and its contents
should not be changed by the user), or whether it was initially open (but later
on possibly filled by the user with a symbol). This can be accomplished by
an attribute boolean locked per cell.

2. The client can construct a binary puzzle in its initial state from a given
Scanner. The format is described in Section 2.

The controller (one of the clients of a binary puzzle model) can then provide
a scanner for a text file that the user has selected (through a JFileChooser).

3. The client can query (the state of) a cell given by its coordinates. This in-
cludes whether it is locked, and whether it is involved in a rule violation.
This could be accomplished through separate query methods.

4. The client can modify the state of a cell given by its coordinates to a given
new state, provided that the cell is not locked.

5. The client can query the puzzle state as a string, which can then be written
to a file. The format is described in Section 2.

6. The client can query whether the current state violates the rules.

This analysis is not necessarily complete. The code will evolve later on, as it is
being used by actual client code.
Avoid code duplication, and follow the DRY principle: Don’t Repeat Yourself. For
instance, you can use an Iterable<Cell> to iterate over a line, being either a
row or a column. That way, you can write the code to check the rules for a line
once, and apply it to both rows and columns.
Note that your test cases are an important first client of this code.

c© 2012–2013, TUE.NL 5/14

Programming Methods (2IP15) Series BPA (v1.2)

5 GUI: Views + Controller

Here are some hints for the design and implementation of view and controller
classes.

1. What goes where? The requirements tell us what the user is to see of the
model (that is, of the puzzle). This needs to be done by the view, in particular,
in its paintComponent method:

• A rectangular grid of cells, partially filled with symbols 0 and 1.
• Some indication of whether the rules are violated, preferably as local-

ized as possible (e.g., using red symbols).
• It might be good to visually distinguish locked cells (e.g., using grey

symbols).
• Finally, it might be nice to provide visual feedback when the puzzle is

solved.

The view also needs to offer functionality to convert mouse coordinates
within the grid into cell (row and column) indices, so that the controller
can handle mouse clicks.

The controller has to offer functionality

• to load a puzzle from a file through an Open menu item in the File
menu;
• to change the puzzle state when the user clicks in a cell (shown in the

view);
• and later do the remainder and extras (clear all unlocked cells, invoke

a solver, save to file, etc.).

Both viewer and controller need access to the (puzzle) model. Both can store
a reference to the puzzle in a (private) instance variable. The controller sets
it in the view (because the controller can call methods in the view directly,
but not the other way round).

2. Where to start the development? With the view or the controller? A chicken-
egg problem. Let’s consider both options in turn.

(a) Start with the view. In order to view something, a puzzle needs to
be available. This puzzle could be provided via the controller, which
needs to handle the Open menu item anyway. Alternatively, we could
test the view without controller by feeding it some puzzles created from
hard-coded strings (see your test cases for the model) or from a hard-
coded file. Hard-coding is not flexible and such test cases must even-
tually be replaced as the controller evolves. Anyway, also in this ap-
proach with a hard-coded controller, testing of the view needs to be
done manually (to check the visualization).

c© 2012–2013, TUE.NL 6/14

Programming Methods (2IP15) Series BPA (v1.2)

(b) Start with the controller. In order to test the loading of a puzzle from a
file, the loaded puzzle must be inspected. Since the loading is invoked
manually, it might as well be inspected manually. For that purpose, the
puzzle needs to be visualized. This need not be graphically, but could
simply be in the form of a string sent to standard output (the console),
or in a text area (JTextArea).
It might be good to have a scrollable text area available anyway, so that
the controller can log its activities (both for user feedback, and helpful
in testing and debugging). This text area can stay inside the controller,
since its purpose is not to render an up-to-date view of the model. The
text area can be tested without puzzle.

3. So, in conclusion, it might be best to start with the controller, loading a
puzzle from a file through the Open menu item, showing it in textual form.

(a) Create a new JFrame Form by right-clicking in the gui package (you
can name it MainFrame). This class will have a mainmethod, which
can be used to run the application. That is another reason to start with
the controller.
The view class is not yet needed. First, complete the loading operation
in the controller, and test it.

(b) Add a menu bar, in the Design view of MainFrame (drag it from the
Swing Menus in the palette on the right).

(c) If not yet present, add a menu to the menu bar (again by dragging), and
change its name into File.

(d) Add menu items Open and Quit to the File menu (you can also drag
menu items).

(e) Add a Text Area within a Scroll Pane to the controller window.

(f) Add actionPerformed event handlers to the menu items, and im-
plement these methods. Use System.exit(0) to quit the applica-
tion. Write the loaded puzzle as string to the text area using the method
JTextArea.append(String).

(g) Test the menu items.

4. The automatically generated names for GUI elements are too general. You
must give generated instance variables better, application-specific names.
This is done in the Design view, by right-clicking on the element and se-
lecting “Change Variable Name. . . ”. For example, change jMenuItem1
into jMenuItemOpen.

5. Next, provide a graphical view, initially without highlighting.

(a) Create a new JPanel Form (a subclass of JPanel) by right-clicking
in the gui package (you can name it PuzzlePanel).

c© 2012–2013, TUE.NL 7/14

Programming Methods (2IP15) Series BPA (v1.2)

(b) In the Design view of MainFrame, drag a PuzzlePanel from the
(top-left) projects pane to the main window (frame); place and size it
appropriately.

(c) Give the PuzzlePanel a private instance variable puzzle and a
corresponding setter method, so that the controller can inform the view
about the puzzle to visualize.

(d) Override the paintComponent method in PuzzlePanel to draw
(the current state of) the model. Do not forget to start with

super.paintComponent(g);

(e) Note that NetBeans will introduce a MouseAdapter to delegate the
handling of mouse events.

6. Test the view.

7. In MainFrame, add a mouseClicked event handler to the the puzzle
panel. Implement this method. It will need to ask the view to convert the
mouse coordinates into (a reference to) a grid cell (or its coordinates).

8. Test mouse clicking.

Note that proper handling of mouse events could be tested in a unit test, by
generating appropriate mouse events in the unit test and checking that they
had the expected effect. However, this is not needed (also see below about
manual testing).

9. Incorporate other functionality.

These considerations are not necessarily complete. The code will evolve further,
as it is being used while the application grows.

Advice Add functionality in small increments and see to it that your program com-
piles and runs properly after every increment.

Testing Note that this code also needs to be tested systematically, to prevent sur-
prises later on. However, it is harder (though not impossible) to automate the test-
ing of graphical user interfaces.

For this assignment, we will be satisfied with some test cases that are executed man-
ually. Describe these manual test cases in comments in an, otherwise, empty test Describe

manual
test cases

class. For instance, the test cases for the main controller in MainFrame.java
reside in MainFrameTest.java. That will ensure that we can check them, that
you can repeat them, and that you will not just do some ad hoc improvised playing
instead of systematic testing.

c© 2012–2013, TUE.NL 8/14

Programming Methods (2IP15) Series BPA (v1.2)

6 Solvers

Here are some hints for the design and implementation of solver classes.

1. There are three pieces of functionality to design and implement:

(a) an undo/redo facility; although the original requirements state that this
has lower priority for the user, it is still important for some strategies
and for the backtracker when it is using the strategies;

(b) a facility to automatically fill open cells according to certain strategies
for forced cells (see Section 2, item 5; note that requirement 5(c) is not
immediately necessary);

(c) a backtrack solver; for efficiency reasons, it also applies the selected
strategies.

2. The undo/redo facility can be realized through the Command design pattern.
Put it in a separate package commands.

The first concrete command to incorporate concerns the operation to change
the state of a cell. That operation takes one parameter, the new cell state,
and it is called on a particular Cell object (the receiver). To undo it, the
command needs to store the old cell state before changing the cell.

Note that it is useful to incorporate the protocol checking as was done in
the CommandPattern example (using exceptions and the instance vari-
able executed). However, this needs some thinking when providing a
compound command (see below).

3. Provide a unit test to exercise the functionality in the commands classes.

4. Provide an Undo menu item in the Edit menu, and also a Redo. The imple-
mentation will involve an undo and a redo stack of commands.

5. When applying strategies, it is convenient to collect all the resulting cell
changes in a single compound command. This allows for the possibility to
undo and redo all these changes in one step.

6. Provide strategy classes with methods to fill (one or more) open cells that
are forced to a certain symbol by the rules. Design an appropriate strategy
interface and toolkit to combine them flexibly. Here are some considerations.

• Each strategy offers a method that applies it to a given (open) cell.

• A decorator strategy that finds an empty cell to which a given strategy
applies, and then applies it, resulting in, at most, one changed cell.

• A decorator strategy that repeatedly applies a (possibly composite)
strategy until no further changes occur.

c© 2012–2013, TUE.NL 9/14

Programming Methods (2IP15) Series BPA (v1.2)

• A composite strategy that consists of a collection of strategies that are
applied in succession.

Each strategy returns a compound command of (already executed) cell chang-
ing commands that resulted from the application of the strategy. That way, it
is easy to undo them (in another strategy, the backtracker, or the user inter-
face).

The puzzle on which these methods operate, can be stored in an instance
variable (provide at least a setter, so that the controller can set the puzzle
after loading it).

Here, the Strategy design pattern can be used, as well as the Decorator de-
sign pattern and the Composite design pattern.

7. Provide a Puzzle menu with a menu item Apply Strategies to let the user
select and apply strategies. The user can select which strategies will be ap-
plied and whether strategies will be applied once or until no change occurs
(check box menu items).

You can test the strategy functionality manually (no automated unit test
needed; but do describe your manual testing).

8. Provide a class Backtracker to automatically solve a puzzle through
backtracking. To make the backtracker more efficient, it starts by apply-
ing the strategies. Next, it picks an open cell (if none exist, the puzzle is
solved), and tries both symbols in succession, solving the remainder through
recursion.

The puzzle on which the backtracker operates, can be stored in an instance
variable (provide at least a setter, so that the controller can set the puzzle
after loading it).

9. There are two modes of operation to consider:

(a) Required: The backtracker continues searching until it has exhausted
all possibilities; it reports solutions, as they are found, through a ob-
server interface; the controller registers a simple observer that appends
each solution as string to the text area.

(b) Optionally: The backtracker stops as soon as it finds a first solution,
and leaves that solution in the puzzle, so that the view can show it.
This can be accomplished in various ways.

• The recursive backtrack method returns a boolean to indicate
that it found a solution; this return value is checked, and if true,
the backtracker breaks off the search and returns true to propa-
gate the termination.
• Alternatively, it can be done by throwing a custom exception in the

recursive method, and catching it outside the recursive method.

c© 2012–2013, TUE.NL 10/14

Programming Methods (2IP15) Series BPA (v1.2)

10. Provide a menu item Solve All in the Puzzle menu to let the user invoke the
backtracker to find all solutions.

You can test the backtracker manually (no unit test needed).

If you want, you can a add a second menu item Solve One for the function-
ality to stop at the first solution found.

These considerations are not necessarily complete. The code will evolve further,
as it is being used while the application grows.

7 Edit and Save

Some hints for the design and implementation of the edit and save facilities:

1. There are two pieces of functionality to design and implement:

(a) ability for the user to switch to edit mode; in edit mode, the user can
change the initial state of the puzzle; that is, the user can change the
state of locked cells;

(b) ability for the user to save the current puzzle state in a file; see require-
ments for details on the file format.

2. Incorporating the edit facility involves the following:

(a) Add an Edit Mode check box menu item in the Edit menu, to let the
user switch to and from edit mode.

(b) When entering edit mode, all unlocked cells are cleared (if you are nice,
ask for confirmation). This need not be undoable.

(c) In edit mode, a mouse click changes any cell: the controller first un-
locks it, then changes its state, and finally locks it, unless it is open.

(d) In edit mode, the Apply Strategies and Solve menu items should be
disabled, or return without doing anything.

You can test this edit functionality manually (no unit test needed).

The operations in edit mode must be be undoable and redoable.

3. Provide a menu item Save. . . in the File menu to let the user save the
current puzzle state to a file.

Reuse the JFileChooser that was introduced for loading puzzles from
text files. Instead of the showOpenDialogmethod, the showSaveDialog
method is called.

It is good practice, to ask confirmation when the selected file already exists,
and not to overwrite it silently. This can be accomplished with the static

c© 2012–2013, TUE.NL 11/14

Programming Methods (2IP15) Series BPA (v1.2)

JOptionPane.showConfirmDialog method. Also see §11.2.3 in the
course book by David Eck.

You can test the save functionality manually (no unit test needed).

8 Run the Backtrack Solver in a Background Thread

Here are some hints to run the backtracker in a separate thread.

1. Without concurrency, all activity in the Binary Puzzle Assistant runs in a
single thread, the GUI thread. This has two disadvantages:

(a) Any calculation (for example, finding all solutions) that takes more
than a fraction of a second, will block the GUI from responding to user
actions. The user will have to wait until the calculation finishes. The
user even does not have the ability to abort or interrupt the calculation,
without terminating the entire application.

(b) Even if the user is willing to wait, such a longer running calculation
cannot produce graphical output (involving updates of the view).

These limitations can be overcome by running such calculations in a sepa-
rate thread. Here, you are required to run the backtrack solver “in the back-
ground” via a SwingWorker.

2. There are several things to take care of (also see slides and example code):

(a) Create, configure, and start the SwingWorker, when the user selects
the Solve menu item. This SwingWorker will simply invoke the
backtrack solver in a separate thread.

(b) Introduce a way for the user to abort the backtrack solver. For example,
by changing the menu item that invoked the solver, into an Abort menu
item. There is one event handler for this menu item, and its action then
depends on whether or not the solver is running: either start or stop it.

(c) When the user requests to abort the solver process, the controller should
not just kill it, because that might leave the model in an undefined state.
All that it should do is raise a flag to communicate this request to the
solver. The solver will have to be adapted to honor such a request at a
safe moment, preserving the integrity of the model.
Since the backtrack solver is recursive, the body of the recursive method
can start by checking whether an abort is requested, and if so, throw
an InterruptedException, which is caught by a (non-recursive)
top-level method, that then terminates (without exception).

c© 2012–2013, TUE.NL 12/14

Programming Methods (2IP15) Series BPA (v1.2)

(d) When the backtrack solver finds a solution, it can signal this to the
controller, so that the view can be updated. It suffices here to provide
the solver with an observer that updates the view and waits for half a
second to let the user get at least a glimpse of the solution, before it is
overwritten by the next solution.

3. You can test the SwingWorker functionality manually (no automated unit
test needed).

Notes Concurrency is wonderful and dangerous (as are other things in life). This
part of the assignment is a first practical encounter with concurrency.

The communication from the solver thread to the GUI thread brings some com-
plications, depending on how you designed the view. If the view draws the model
on-demand in a paintComponent method, then the view will track the solver.
However, the view will be updated only when requested, either by an explicit
repaint (or similar method) call from the application itself, or by a user action,
such as resizing the window. The solver thread keeps modifying the model state,
while the view is querying it. That way, the user may end up seeing an inconsistent
rendering of the model state. For this assignment, that is acceptable.

The application should not crash or “damage” the model data structure through
concurrent modifications. It would be best to block user action that can change the
model (mouse clicks on cells, applying strategies), while a backtracker is active.

9 Grading Criteria

The Coding Standard for 2IP15 applies, as well as the Checklist for developing
larger object-oriented programs. Also important is that functionality works as re-
quired and has no undesirable side effects (such as crashes).

All functionality (all priority levels) must be present. The indicated design patterns
must have been applied; in particular,

• Command pattern (for undo-redo, strategies, and backtracking)

• Composite pattern (for commands and for strategies)

• Strategy pattern (for strategies and backtracking)

• Decorator pattern (for strategies)

• Observer pattern (for the backtracker)

Offering the possibility to stop the backtracker at the first solution is optional.

c© 2012–2013, TUE.NL 13/14

Programming Methods (2IP15) Series BPA (v1.2)

10 Change History

v1.0 First release.

v1.1 Released to instructors only.

1. Added a note about the significance of priorities.

2. Clarified testing of mouse event handling.

3. Added advice on incremental development.

4. Removed quotes around strategy.

5. Clarified requirements for automatic strategies.

6. Removed drag-and-drop from Edit Mode.

7. Added undo-redo to Edit Mode.

v1.2 1. Various minor improvements in the formulation.

2. Required that automatically generated names of GUI elements are changed
into application-specific names.

3. Clarified manual testing: describe it via comments in a test class.

4. Changed listener into observer.

c© 2012–2013, TUE.NL 14/14

